

ACC Regional Meeting October 19th, 2013

Transcatheter Aortic Valve Replacement (TAVR)

James Hermiller, MD, FACC, FSCAl St Vincent Medical Group St Vincent Heart Center Indianapolis, IN

Disclosures

Affiliation/Financial Relationship

- Consulting Fees/Honoraria
- Speaker Bureau
- Research Support
- CoreValve Steering US Pivotal Trial

Company

- Abbott, BSC, Medtronic and St Jude
- Medicines Company
- Medtronic, Abbott, BSC
- Medtronic

Introduction

- Is Severe AS Present? Does the patient have the disease?
- Clinical Candidate
 - Partner A? B? C? D?
- Anatomic Suitability Annulus, Root, Coronary-Annulus Relationship, CAD, ST Junction, ASH?
- Access Femoral, Subclavian, Direct Aortic, Apical?

Initial Thought

Team Sport

Two Different Patterns of Low-Flow, Low-Gradient AS

NORMAL-LVEF NORMAL-FLOW HIGH-GRADIENT

50-70%

NORMAL-LVEF «PARADOXICAL» LOW-FLOW LOW-GRADIENT

10-25%

LOW-LVEF «CLASSICAL» LOW-FLOW LOW-GRADIENT 5-10%

Inaccurate
Measurement
of Doppler
Velocity

Pibarot & Dumesnil JACC 2012;60:1845–53

Patient Selection

- Is Severe AS Present? Does the patient have the disease?
- Clinical Candidate
 - Partner B? Partner A? Partner C?
- Anatomic Suitability Annulus, Root, Coronary-Annulus Relationship, CAD, ST Junction, ASH?
- Access Femoral, Subclavian, Direct Aortic, Apical?

Patient Selection

- Is Severe AS Present? Does the patient have the disease?
- Clinical Candidate
 - Partner B? Partner A? Partner C?
- Anatomic Suitability Annulus, Root, Coronary-Annulus Relationship, CAD, ST Junction, ASH?
- Access Femoral, Subclavian, Direct Aortic, Apical?

The Annulus is Elliptical

The annulus is commonly oval-shaped Reported in approximately 50% of patients evaluated for TAVR

Any single diameter cannot adequately characterize the annulus "size" due to its elliptical non-circular configuration

onal 3.0

ıs ed

on 2-D imaging

Cross-Sectional Computed Tomographic Assessment Improves Accuracy of Aortic Annular Sizing for Transcatheter Aortic Valve Replacement and Reduces the Incidence of Paravalvular Aortic Regurgitation

J Am Coll Cardiol 2012;59:1275-86)

Hasan Jilaihawi, BSc (Hons), MBChB,* Mohammad Kashif, MD,* Gregory Fontana, MD,† Azusa Furugen, MD, PhD,* Takahiro Shiota, MD,* Gerald Friede, BS, MS,* Rakhee Makhija, MD,* Niraj Doctor, MBBS,* Martin B. Leon, MD,‡ Raj R. Makkar, MD*

Table 5 Comparison of Outcomes Related to Prosthesis Sizing With TEE- and CT-Guided Approaches

	All Studied Patients	2D TEE-Guided Annular Sizing	Cross-Sectional CT-Guided Annular Sizing	
Outcomes	(n = 136)	(n = 96)	(n = 40)	p Value
PV AR				0.001
None	41 (30.1)	23 (24)	18 (45)	
Trivial or mild	71 (52.2)	52 (54.1)	19 (47.5)	
Mild-moderate	9 (6.6)	8 (8.3)	1 (2.5)	
Moderate	12 (8.8)	10 (10.4)	2 (5)	
Moderate-severe	3 (2.2)	3 (3.1)	0	
Severe		0	0	
PV AR > mild	24 (17.6)	21 (21.9)	3 (7.5)	0.045
Need for bail-out valve-in-valve	1 (0.7)	1(1)	0	0.52
Annular rupture	1 (0.7)	1 (1)	0	0.52
Prosthesis instability (rocking)	1 (0.7)	1 (1)	0	0.52
Peri-procedural mortality	4 (3)	3 (3.2)	1 (2.5)	0.82

The St Paul's CT Sizing Scale

The St Paul's CT Sizing Scale

Annular Area (mm²)	THV size (mm)
230 to 300	20
310 to 320	20 or 23
330 to 400	23
410	23 or 26
420 to 510	26
520	26 or 29
530 to 660	29
>660	Risk of leak/embolisation with 29

CoreValve Sizing Table

Valve Size	Aortic Annulus Diameter (mm)	Ascending Aortic Diameter (mm)	Sinus of Valsalva Width (mm)	Sinus Valvsalva Height (mm)	Perimeter (mm)
23	18-20	<u><</u> 34	<u>></u> 25	<u>≥</u> 15	56.5 -62
26	20-23	<u><</u> 40	<u>></u> 27	>15	62-72
29	23-27	<u>≤</u> 43	<u>></u> 29	>15	72-84
31	26-29	<u><</u> 43	<u>></u> 29	>15	82-91

Patient Selection

- Is Severe AS Present? Does the patient have the disease?
- Clinical Candidate
 - Partner B? Partner A? Partner C?
- Anatomic Suitability Annulus, Root, Coronary-Annulus Relationship, CAD, ST Junction, ASH?
- Access Femoral, Subclavian, Direct Aortic, Apical?

CoreValve Vascular Access

18 Fr sheath introduction Sheath choices include: 28 cm Gore Dry Seal, 30 cm Cook Check Flo and 30 cm St. Jude Ultimum

Arterial diameter ≥ 6mm

Tortuosity

Calcium

Edwards-Sapien

24 French sheath 23 Valve 26 French Sheath 26 Valve

Arterial diameter ≥ 7mm for 23 Arterial diameter ≥ 8 mm for 26

Femoral: Unsafe/Suboptimal

Subclavian/Axillary Selection

- Vessel size
 - Corevalve 23, 26, 29 and 31: 6 mm
- Atherosclerotic lesions Calcification?
- Tortuosity Severe?
- Patent LIMA graft
 - Relative contraindication
- PPM or AV Fistula
- Right approach usually contraindicated
 - Risk of lesion of the right carotid
 - Suboptimal aiming with CoreValve

Strategy

CoreValve vs Edwards-Sapien

CoreValve vs Edwards-Sapien

 78 year old man Hx of Coarct repair, prior CABG, Cr 1.8 mg/dl, moderated COPD, myasthenia gravis (immunosuppresive therapy), DM, atrial fibrillation – STS 11.9%

- LVEF 40%
- Grafts patent
- Echo AV velocity peak 4.3 M/sec with valve area of 0.7 cm2

	100	Area derived is:	6.6 mm/		
Valve Size	Aortic Annulus Diameter (mm)	Ascending Aortic Diameter (mm)	Sinus of Valsalva Width (mm)	Sinus Valvsalva Height (mm)	Perimeter (mm)
29	23-27	<u>≤</u> 43	<u>></u> 29	>15	72.3-84.8
31	26-29	<u><</u> 43	<u>></u> 29	>15	82-91.1

Atom \$26.7 mm²

Ao Annulus mean diameter 25.7 mm

	Area 530 mm2
28 x 23.3	Major x Minor aortic annulus diameter
82.3	Aortic Annulus perimeter (26.2 x 3.14)
34.7	Max Ascending Aorta diameter
32.4-35.6	Sinus of Valsalva width
25.3-27.2	Sinus of Valsalva height (all in mm)
31.6-31.9	Sinotubular Junction width (STJ)

CT 3D Reconstructions

AP of Abdominal Aorta and iliacs

Lateral of Abdominal Aorta and iliacs

Tortuosity: None (per site)

Calcification: Mild LFA, LCI, Mod. RCI (per site)

CT Images: Peripheral Artery Measurements

Site Image of iliofemoral artery measurements – Not provided

Clinical Analyst's Image

9.0 x 9.0	RFA min.	diameter

9.0 x 9.0 RIA min. diameter

8.0 x 9.0 LFA min. diameter

9.0 x 9.0 LIA min. diameter

(all in mm)

7.6 x 8.1 RFA min. diameter

7.5 x 8.1 RIA min. diameter

7.6 x 8.2 LFA min. diameter

7.6 x 8.3 LIA min. diameter

(all in mm)

femoral artery measurements start at mid femoral head

History

- 89 year old male Ht: 5'10" Wt 205 lbs
- NYHC IV CHF and DOE
- HTN, DM, CAD
- Atrial Fibrillation on Chronic Warfarin
- Prior CVA with Nearly Complete Recovery
- Former Smoker Quit in 2000
- FEV1 of 59% Predicted
- Creatinine 1.8 mg/dl
- Hb 10.2 gm/dl and Hct 32.1
- Lives with wife independently; 5M walk 4 sec

History

_		
Online STS Risk Calculator Dataset: 2.61		
Help <u>More about Risk Calculator</u>		
Procedure		
Coronary Artery Bypass	C Yes No C Missing	
Ventricular Assist Device	○ Yes ⓒ No ○ Missing	
Valve Surgery		
Aortic	© No	
	 Replacement 	
	C Repair/Reconstruction	
	C Root Reconstruction with Valve Cond	
	C Replacement + aortic graft conduit (n	
	C Root Reconstruction with Valve Spari	
	Resuspension Aortic Valve with repla	
	Resuspension Aortic Valve without re	
	Resection Sub-Aortic Stenosis	

Calculations	
Procedure Name	Isolated AVRepl
Risk of Mortality	17.1%
Morbidity or Mortality	53.4%
Long Length of Stay	39.8%
Short Length of Stay	4.7%
Permanent Stroke	4.4%
Prolonged Ventilation	43.8%
DSW Infection	0.7%
Renal Failure	31.3%
Reoperation	18.3%

Baseline Echocardiography

- Peak AV Velocity 4.3 M/sec
- Peak AV Gradient 73 mmHg
- Mean Gradient 43 mmHg
- EF 55%
- Estimated PAP -55/26 mmHg
- LVOT 22 mm
- MR 2+
- TR 1+

Annulus/Root Assessment

Heavily Calcified Tri-leaflet Valve

Annulus/Root Assessment

Coronary Height 17 and 19 mm; Ascending Ao 31 mm

TOPFIN*CHARLES*R 947/11 9t: 631/203 Se: 40 2018/03/18

Left femoral 7x9 mm; external iliac 8x8; common 10x11mm

What was Done

- Trans-Femoral TAVR
- 26 mm Edwards-Sapien
- General Anesthesia/TEE
- Left Femoral

Post Procedure

- Procedure time 35 minutes
- TEE No Al with appropriate valve positioning
- Extubated on table
- Ambulating that evening
- Creatinine peaked to 2.0 mg/dl and at discharge 1.6 mg/dl
- Home day 3

91 year old severe AS

History

- 84 year old
- Severe AS with FC IV CHF, atrial Fib
- COPD on home 02
- Hx Non-Hodgkins Lymphoma
- Pulmonary HTN 70mm Hg & Mild-Mod TR
- Peak aortic valve velocity 4.6 M/sec
- Mean Aortic Vale Gradient 54 mmg Hg with valve area of 0.7 cm2
- Severely Calcified Porcelain Aorta & Frail
- Femoral-Iliacs <5 mm in diameter & calcified

Vascular Measurements

- 22 mm Aortic annular size with perimeter of 75 mm
- SOV 27mm
- 40.5 mm ASC aorta diameter
- Severe concentric femoral/iliac calcification and tortuosity
- Max diameters of femorals 5 mm

- Right subclavian 4mm min size
- Left
 subclavian
 smallest
 diameter 5.8
 x 7.2 mm

St Jude sheath just past vertebral would not turn into aorta

Following
 valvuloplasty
 with 20 mm
 balloon

Deliver CoreValve

A little push

DeliverCoreValve

Post Procedure and F/U

- Uneventful post procedure course equal BP's both arms
- 1 month follow up normal LV function, trivial AI, and estimated RV pressure 42 mm Hg preserved LV function; equal BP's in both arms

