Personalized Medicine: Genetic Testing 101 - Costs, Benefits and Effectiveness

David A Flockhart MD, PhD
Professor of Medicine, Genetics and Pharmacology
Indiana Institute for Personalized Medicine
Indiana University School of Medicine
Challenges to Health care in 2011

• Economic Downturn with a no employment recovery
• The inevitable cost of Health Care Reform
• Coverage of millions of uninsured
• Flat to reduced NIH funding

• More efficient, effective health care
• More Prevention, more Personalized Medicine
Challenges for Personalized Medicine

- Genomics has not delivered
- Proteomics has not delivered
- Bioinformatics has not delivered
- Empty Pharmaceutical Pipelines
- Effective Electronic Medical Records are Rare Events
Indiana Institute for Personalized Medicine

The Indiana Institute for Personalized Medicine explores how genetic information and environmental exposure affect each person's risk to develop certain diseases and response to medication.

The Institute examines how this new model of genome-informed personalized healthcare may be translated in clinical settings to advance the practice, delivery and economics of health care.

While personalized medicine is transforming the health system as we know it, we are bridging the gap between genomics research and patient care.
Pharmacogenomic Personalization of Therapy for Heart Failure

GOAL: To develop pharmacogenetic biomarkers that constitute a predictive panel to guide the stratification of heart failure therapy, and therefore to improve treatment outcomes and quality of life of individual patients.

- The right drug
- To the right disease
- At the right time
- With the right dosage
The Problem with Mean Response Data: Heterogeneity in Response to Medicines In Clinical Trials

Frequency of various responses in the RCT treated population

- Large Benefit with little harm (10%)
- Mixed Benefit and Harm (30%). Small benefit for most.
- Neither harm or benefit -- Nonresponders (50%)
- Harm Without Benefit (10%)

Evans B, Flockhart DA et al. (2010)
Factors Influencing Response to Heart Failure Therapy

Genetic Polymorphisms
Candidate Variants:
- β blockade signaling pathways
- ACE - inhibitor signaling pathways
- Renal diuretic signalling
- Therapeutic ADME genes

Clinical Factors
- NYH 1-IV
- Diabetes
- Demographic factors
- Co-morbidity

SNPs that change clinical outcome
SNPs that change drug response
SNPs that change pharmacokinetics
SNPs that change activity in vitro
Non-conservative amino acid changes
Non-synonymous SNPs in exons
SNPs in Genome Wide Arrays
- 1.2 million
All SNPs
- 14 million
<table>
<thead>
<tr>
<th>Fourteen Drugs and Their Available Pharmacogenetic Tests October 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Abacavir</td>
</tr>
<tr>
<td>• Clopidogrel</td>
</tr>
<tr>
<td>• Tamoxifen</td>
</tr>
<tr>
<td>• metformin</td>
</tr>
<tr>
<td>• Imatinib</td>
</tr>
<tr>
<td>• 5-Fluorouracil</td>
</tr>
<tr>
<td>• Clozapine</td>
</tr>
<tr>
<td>• QT-prolonging Drugs</td>
</tr>
<tr>
<td>• Irinotecan</td>
</tr>
<tr>
<td>• Azathioprine and Mercaptopurine</td>
</tr>
<tr>
<td>• Warfarin</td>
</tr>
<tr>
<td>• Carbamazepine</td>
</tr>
<tr>
<td>• Interferon</td>
</tr>
<tr>
<td>• HLA *B5701</td>
</tr>
<tr>
<td>• CYP2C19</td>
</tr>
<tr>
<td>• CYP2D6</td>
</tr>
<tr>
<td>• OATP3</td>
</tr>
<tr>
<td>• BCR-ABL</td>
</tr>
<tr>
<td>• DPYD-TYMS</td>
</tr>
<tr>
<td>• 2 SNPs in HLA-DQB1</td>
</tr>
<tr>
<td>• Familion™</td>
</tr>
<tr>
<td>• UGT1A1</td>
</tr>
<tr>
<td>• TPMT</td>
</tr>
<tr>
<td>• CYP2C9 and VKCoR</td>
</tr>
<tr>
<td>• HLA-B* 1502</td>
</tr>
<tr>
<td>• IL 28b</td>
</tr>
</tbody>
</table>
The potential difficulty in dosing a CYP 2C9 poor metabolizer with warfarin
VKORC1 Haplotype and CYP2C9 Genotype changed Warfarin Dose

Primary cohort: UW (N=185);
Replication cohort: Wash U (N=368).

All participants were Caucasian.

Pharmacogenetic Prediction worked better for the 46% of patients who require less than 21, or more than 49 mg per week.

None of the Fixed and INR-guided estimates for low and high dose groups were within 20% of actual dose.

Pharmacogenetic Principle 1:

Value Decreases when Current Predictive Ability is High

Meyer UA and Flockhart DA, 2005
Reality in Warfarin Pharmacogenomics

INR is of most value in warfarin clinics and academic settings

Most warfarin is given outside these

Pharmacogenomic testing of most value in non-academic environments
Omeprazole
Carriers of a CYP2C19 Genetic Variant Experienced More Cardiovascular Events
(NEJM 360;4 January 22, 2009)

Simon et al, NEJM, April, 2009
Risk of All-Cause Mortality and Recurrent ACS in Patients Taking Clopidogrel and PPI

Summary

• Pharmacogenomic testing is now being widely applied to some of the most widely prescribed drugs
• Pharmacogenomic biomarkers require demonstration of clinical utility before widespread implementation
 – This has happened in very few cases to date
• Clinical pharmacogenomic predictive tests must provide real value over existing predictors
• Economic utility is often as important as clinical utility
Tools for Personalized Medicine at the Indiana University School of Medicine

- A Robust Electronic Medical Record with Long Follow Up
- A Biobank of Samples that Links to the EMR
- Genomic and Pharmacogenomics Expertise
- Imaging Expertise
- Informatic Expertise – Center for Computational Biology
- Modeling Expertise – CTSI Disease and Therapeutics Modeling Program
- Trained Professionals
- Strategic Partnerships with Implementers
Pharmacogenomics Testing to Guide Treatment

All Patients with Same Diagnosis (10% risk)

PGx testing

- **high risk:** treat with alternative drug or dose
- **moderate risk:** treat with alternative drug or dose
- **low risk:** treat with conventional dose